1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
use std::fmt;
use crate::Scalar;
use std::ops::{Add, Sub, Mul, Div, AddAssign, SubAssign, MulAssign, DivAssign};
use num::Zero;

/// A struct representing a complex number with `f32` real and imaginary components.
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
pub struct Complex {
    pub real: f32,
    pub imag: f32,
}

impl Complex {
    /// Creates a new `Complex` number given a real and imaginary part.
    ///
    /// # Arguments
    ///
    /// * `real` - The real component of the complex number.
    /// * `imag` - The imaginary component of the complex number.
    ///
    /// # Returns
    ///
    /// A new `Complex` number with the specified real and imaginary components.
    ///
    /// # Example
    ///
    /// ```
    /// use matrix::Complex;
    ///
    /// let complex_num = Complex::new(3.0, 4.0);
    /// assert_eq!(complex_num.real, 3.0);
    /// assert_eq!(complex_num.imag, 4.0);
    /// ```
    pub fn new(real: f32, imag: f32) -> Self {
        Self { real, imag }
    }

    /// Returns the conjugate of the complex number.
    ///
    /// The conjugate of a complex number `a + bi` is given by `a - bi`.
    ///
    /// <img src="https://github.com/user-attachments/assets/0c6c385f-7bf4-4892-9e9a-ca8bc4aea0b2" alt="complex numbers magnitude formula" />
    ///
    /// # Returns
    ///
    /// A new `Complex` number with the same real component and a negated imaginary component.
    ///
    /// # Example
    ///
    /// ```
    /// use matrix::Complex;
    ///
    /// let complex_num = Complex::new(3.0, 4.0);
    /// let conjugate = complex_num.conjugate();
    /// assert_eq!(conjugate, Complex::new(3.0, -4.0));
    /// ```
    pub fn conjugate(self) -> Self {
        Self { real: self.real, imag: -self.imag }
    }

    /// Computes the magnitude (or modulus) of the complex number.
    ///
    /// The magnitude of a complex number \( z = a + bi \) is calculated as:
    ///
    /// <img src="https://github.com/user-attachments/assets/628a3bbc-43d6-4503-863b-25d885084c6f" alt="complex numbers magnitude formula" />
    ///
    /// where `a` is the real part and `b` is the imaginary part of the complex number.
    ///
    /// # Returns
    ///
    /// A `f64` value representing the magnitude of the complex number.
    ///
    /// # Example
    ///
    /// ```
    /// use matrix::Complex;
    ///
    /// let complex_num = Complex::new(3.0, 4.0);
    /// assert_eq!(complex_num.magnitude(), 5.0);
    /// ```
    pub fn magnitude(&self) -> f32 {
        (self.real * self.real + self.imag * self.imag).sqrt()
    }
}

impl fmt::Display for Complex {
    /// Formats the `Complex` for display.
    ///
    /// # Parameters
    /// - `f`: A mutable reference to a `fmt::Formatter` for formatting.
    ///
    /// # Returns
    /// - `fmt::Result`: Indicates success or failure of the formatting.
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "({} + {}i)", self.real, self.imag)
    }
}

impl Add for Complex {
    type Output = Self;

    /// Adds two `Complex` numbers.
    ///
    /// Given two complex numbers `a + bi` and `c + di`, the sum is:
    ///
    /// <img src="https://github.com/user-attachments/assets/00316ce6-d1f2-4078-b8b5-d489659e538f" alt="complex nums addition" />
    ///
    /// # Arguments
    ///
    /// * `self` - The first `Complex` number.
    /// * `other` - The second `Complex` number to add.
    ///
    /// # Returns
    ///
    /// A new `Complex` number which is the sum of `self` and `other`.
    ///
    /// # Example
    ///
    /// ```
    /// use matrix::Complex;
    ///
    /// let a = Complex::new(3.0, 4.0);
    /// let b = Complex::new(1.0, 2.0);
    /// assert_eq!(a + b, Complex::new(4.0, 6.0));
    /// ```
    fn add(self, other: Self) -> Self::Output {
        Self {
            real: self.real + other.real,
            imag: self.imag + other.imag,
        }
    }
}

impl Sub for Complex {
    type Output = Self;

    /// Subtracts one `Complex` number from another.
    ///
    /// Given two complex numbers `a + bi` and `c + di`, the difference is:
    ///
    /// <img src="https://github.com/user-attachments/assets/f8a0b1a3-a4f7-4917-a72c-0bd43f4f6d43" alt="complex nums addition" />
    ///
    /// # Arguments
    ///
    /// * `self` - The `Complex` number to be subtracted from.
    /// * `other` - The `Complex` number to subtract.
    ///
    /// # Returns
    ///
    /// A new `Complex` number which is the difference of `self` and `other`.
    ///
    /// # Example
    ///
    /// ```
    /// use matrix::Complex;
    ///
    /// let a = Complex::new(3.0, 4.0);
    /// let b = Complex::new(1.0, 2.0);
    /// assert_eq!(a - b, Complex::new(2.0, 2.0));
    /// ```
    fn sub(self, other: Self) -> Self::Output {
        Self {
            real: self.real - other.real,
            imag: self.imag - other.imag,
        }
    }
}

impl Mul for Complex {
    type Output = Self;

    /// Multiplies two `Complex` numbers.
    ///
    /// Given two complex numbers `a + bi` and `c + di`, the product is:
    ///
    /// <img src="https://github.com/user-attachments/assets/16e7ccd6-f4e5-4a4f-a3d0-31e2dc8d5f32" alt="complex nums multiplication formula" />
    ///
    /// # Arguments
    ///
    /// * `self` - The first `Complex` number.
    /// * `other` - The second `Complex` number to multiply.
    ///
    /// # Returns
    ///
    /// A new `Complex` number which is the product of `self` and `other`.
    ///
    /// # Example
    ///
    /// ```
    /// use matrix::Complex;
    ///
    /// let a = Complex::new(3.0, 4.0);
    /// let b = Complex::new(1.0, 2.0);
    /// assert_eq!(a * b, Complex::new(-5.0, 10.0));
    /// ```
    fn mul(self, other: Self) -> Self::Output {
        Self {
            real: self.real * other.real - self.imag * other.imag,
            imag: self.real * other.imag + self.imag * other.real,
        }
    }
}

impl Div for Complex {
    type Output = Self;

    /// Divides one `Complex` number by another.
    ///
    /// Given two complex numbers `a + bi` and `c + di`, the quotient is:
    ///
    /// <img src="https://github.com/user-attachments/assets/5b5c6ec8-9ac3-4644-b832-7426f9998a37" alt="complex nums multiplication formula" />
    ///
    /// # Arguments
    ///
    /// * `self` - The `Complex` number to be divided.
    /// * `other` - The `Complex` number to divide by.
    ///
    /// # Returns
    ///
    /// A new `Complex` number which is the quotient of `self` and `other`.
    ///
    /// # Example
    ///
    /// ```
    /// use matrix::Complex;
    ///
    /// let a = Complex::new(3.0, 2.0);
    /// let b = Complex::new(1.0, -1.0);
    /// let result = a / b;
    /// assert!((result.real - 0.5).abs() < 1e-10);
    /// assert!((result.imag - 2.5).abs() < 1e-10);
    /// ```
    fn div(self, other: Self) -> Self::Output {
        let denominator = other.real * other.real + other.imag * other.imag;
        Self {
            real: (self.real * other.real + self.imag * other.imag) / denominator,
            imag: (self.imag * other.real - self.real * other.imag) / denominator,
        }
    }
}

impl AddAssign for Complex {
    /// Adds another `Complex` number to `self`.
    fn add_assign(&mut self, other: Self) {
        *self = *self + other;
    }
}

impl SubAssign for Complex {
    /// Subtracts another `Complex` number from `self`.
    fn sub_assign(&mut self, other: Self) {
        *self = *self - other;
    }
}

impl MulAssign for Complex {
    /// Multiplies `self` by another `Complex` number.
    fn mul_assign(&mut self, other: Self) {
        *self = *self * other;
    }
}

impl DivAssign for Complex {
    /// Divides `self` by another `Complex` number.
    fn div_assign(&mut self, other: Self) {
        *self = *self / other;
    }
}

impl Zero for Complex {
    /// Returns the additive identity of `Complex`, which is 0 + 0i.
    fn zero() -> Self {
        Self { real: 0.0, imag: 0.0 }
    }

    /// Checks if the `Complex` number is zero (both real and imaginary parts are zero).
    fn is_zero(&self) -> bool {
        self.real == 0.0 && self.imag == 0.0
    }
}

impl Scalar for Complex {
    /// Fused Multiply-Add (FMA): Computes `a * b + c` for `Complex` numbers.
    fn fma(a: Self, b: Self, c: Self) -> Self {
        a * b + c
    }

    /// Fused Multiply-Subtract (FMS): Computes `a * b - c` for `Complex` numbers.
    fn fms(a: Self, b: Self, c: Self) -> Self {
        a * b - c
    }

    /// Converts an `f32` value to a `Complex` number with a zero imaginary part.
    ///
    /// # Arguments
    ///
    /// * `value` - The `f32` value to convert.
    ///
    /// # Returns
    ///
    /// A new `Complex` number with the real part set to `value` and imaginary part set to 0.
    fn from_f32(value: f32) -> Self {
        Self {
            real: value,
            imag: 0.0,
        }
    }

    /// Converts the real part of the `Complex` number to `f32`, ignoring the imaginary part.
    ///
    /// # Returns
    ///
    /// The real part of `self` as an `f32` value.
    fn to_f32(self) -> f32 {
        self.magnitude()
    }
}


#[cfg(test)]
mod tests {
    use crate::Matrix;
    use crate::Vector;
    use super::*;

    #[test]
    fn test_complex_magnitude() {
        let complex_num = Complex::new(3.0, 4.0);
        assert_eq!(complex_num.magnitude(), 5.0);
    }

    #[test]
    fn test_vector_creation_and_size() {
        let vec = Vector::new(vec![Complex::new(1.0, 2.0), Complex::new(3.0, 4.0)]);
        assert_eq!(vec.size(), 2);
    }

    #[test]
    fn test_vector_linear_combination() {
        let v1 = Vector::new(vec![Complex::new(1.0, 2.0)]);
        let v2 = Vector::new(vec![Complex::new(3.0, 4.0)]);
        let coefs = vec![Complex::new(2.0, 0.0), Complex::new(-1.0, 0.0)];
        let result = Vector::linear_combination(&[v1, v2], &coefs);
        assert_eq!(result, Vector::new(vec![Complex::new(-1.0, 0.0)]));
    }

    #[test]
    fn test_vector_norms() {
        let v = Vector::new(vec![Complex::new(3.0, 4.0)]);
        assert_eq!(v.norm_1(), 5.0);
        assert_eq!(v.norm(), 5.0);
        assert_eq!(v.norm_inf(), 5.0);
    }

    #[test]
    fn test_vector_addition_and_subtraction() {
        let mut v1 = Vector::new(vec![Complex::new(1.0, 2.0)]);
        let v2 = Vector::new(vec![Complex::new(3.0, 4.0)]);
        v1.add(&v2);
        assert_eq!(v1, Vector::new(vec![Complex::new(4.0, 6.0)]));

        v1.sub(&v2);
        assert_eq!(v1, Vector::new(vec![Complex::new(1.0, 2.0)]));
    }

    #[test]
    fn test_vector_scaling() {
        let mut v = Vector::new(vec![Complex::new(1.0, 2.0)]);
        v.scl(Complex::new(2.0, 0.0));
        assert_eq!(v, Vector::new(vec![Complex::new(2.0, 4.0)]));
    }

    #[test]
    fn test_matrix_creation_and_size() {
        let mat = Matrix::new(vec![
            vec![Complex::new(1.0, 2.0), Complex::new(3.0, 4.0)],
            vec![Complex::new(5.0, 6.0), Complex::new(7.0, 8.0)]
        ]);
        assert_eq!(mat.size(), (2, 2));
    }

    #[test]
    fn test_matrix_addition_and_subtraction() {
        let mut m1 = Matrix::new(vec![
            vec![Complex::new(1.0, 2.0), Complex::new(3.0, 4.0)],
        ]);
        let m2 = Matrix::new(vec![
            vec![Complex::new(5.0, 6.0), Complex::new(7.0, 8.0)],
        ]);
        m1.add(&m2);
        assert_eq!(m1, Matrix::new(vec![
            vec![Complex::new(6.0, 8.0), Complex::new(10.0, 12.0)],
        ]));

        m1.sub(&m2);
        assert_eq!(m1, Matrix::new(vec![
            vec![Complex::new(1.0, 2.0), Complex::new(3.0, 4.0)],
        ]));
    }

    #[test]
    fn test_matrix_transpose() {
        let mat = Matrix::new(vec![
            vec![Complex::new(1.0, 2.0), Complex::new(3.0, 4.0)],
            vec![Complex::new(5.0, 6.0), Complex::new(7.0, 8.0)]
        ]);
        let transposed = mat.transpose();
        assert_eq!(transposed, Matrix::new(vec![
            vec![Complex::new(1.0, 2.0), Complex::new(5.0, 6.0)],
            vec![Complex::new(3.0, 4.0), Complex::new(7.0, 8.0)]
        ]));
    }

    #[test]
    fn test_matrix_trace() {
        let mat = Matrix::new(vec![
            vec![Complex::new(1.0, 0.0), Complex::new(0.0, 0.0)],
            vec![Complex::new(0.0, 0.0), Complex::new(2.0, 0.0)],
        ]);
        assert_eq!(mat.trace(), Complex::new(3.0, 0.0));
    }

    #[test]
    fn test_matrix_determinant() {
        let mat = Matrix::new(vec![
            vec![Complex::new(4.0, 0.0), Complex::new(7.0, 0.0)],
            vec![Complex::new(2.0, 0.0), Complex::new(6.0, 0.0)],
        ]);
        assert_eq!(mat.determinant(), Complex::new(10.0, 0.0));
    }

    #[test]
    fn test_matrix_inverse() {
        let mat = Matrix::new(vec![
            vec![Complex::new(4.0, 0.0), Complex::new(7.0, 0.0)],
            vec![Complex::new(2.0, 0.0), Complex::new(6.0, 0.0)],
        ]);
        let inv = mat.inverse().unwrap();
        let identity = mat.mul_mat(&inv);
        assert!(identity.data[0][1].to_f32() == 0.0 && identity.data[1][0].to_f32() == 0.0 && identity.data[0][0].to_f32() >= 1.0 && identity.data[0][0].to_f32() < 1.1 && identity.data[1][1].to_f32() >= 1.0 && identity.data[1][1].to_f32() < 1.1);
    }

    #[test]
    fn test_matrix_rank() {
        let mat = Matrix::new(vec![
            vec![Complex::new(1.0, 0.0), Complex::new(2.0, 0.0)],
            vec![Complex::new(2.0, 0.0), Complex::new(4.0, 0.0)],
        ]);
        assert_eq!(mat.rank(), 1);
    }
}