1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
use std::cmp::PartialEq;
use crate::scalar::Scalar;
use crate::Matrix;
use std::fmt;
/// A struct representing a mathematical vector that is generic over type `K`.
///
/// The type `K` must implement the `Scalar` trait, which ensures that it supports
/// basic arithmetic operations like addition, subtraction, multiplication, and division.
#[derive(Debug, Clone)]
pub struct Vector<K: Scalar> {
// The underlying data of the vector stored as a `Vec<K>`.
pub data: Vec<K>,
}
impl<K: Scalar, const N: usize> From<[K; N]> for Vector<K> {
/// Converts an array of type `[K; N]` into a `Vector<K>`.
///
/// # Parameters
/// - `array`: An array of type `[K; N]` to convert.
///
/// # Returns
/// - A `Vector<K>` initialized with the elements of the input array.
///
/// # Panics
/// - This function does not panic.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let v = Vector::from([2.0, 3.0]);
/// println!("{}", v); // Outputs: [2.0, 3.0]
/// ```
fn from(array: [K; N]) -> Self {
Vector::new(array.to_vec())
}
}
impl<K: Scalar + fmt::Display> fmt::Display for Vector<K> {
/// Formats the `Vector<K>` for display.
///
/// # Parameters
/// - `f`: A mutable reference to a `fmt::Formatter` for formatting.
///
/// # Returns
/// - `fmt::Result`: Indicates success or failure of the formatting.
///
/// # Panics
/// - This function does not panic.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let v = Vector::from([2., 3.]);
/// println!("{}", v); // Outputs: [2.0, 3.0]
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "[")?;
let mut first = true;
for val in &self.data {
if !first {
write!(f, ", ")?;
}
write!(f, "{}", val)?;
first = false;
}
write!(f, "]")
}
}
impl<K: Scalar> Vector<K> {
/// Creates a new `Vector<K>` from a vector of `K` values.
///
/// # Parameters
/// - `data`: A `Vec<K>` representing the elements of the vector.
///
/// # Returns
/// - A new `Vector<K>` initialized with the provided data.
///
/// # Panics
/// - This function does not panic.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let vec = Vector::new(vec![1.0, 2.0, 3.0]);
/// ```
pub fn new(data: Vec<K>) -> Self {
Self { data }
}
/// Returns the number of elements in the `Vector`.
///
/// # Returns
/// - The size of the `Vector<K>`.
///
/// # Panics
/// - This function does not panic.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let vec = Vector::new(vec![1.0, 2.0, 3.0]);
/// assert_eq!(vec.size(), 3);
/// ```
pub fn size(&self) -> usize {
self.data.len()
}
/// Prints the contents of the `Vector` to standard output.
///
/// # Returns
/// - No return value.
///
/// # Panics
/// - This function does not panic.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let vec = Vector::new(vec![1.0, 2.0, 3.0]);
/// vec.print(); // Outputs: [1.0, 2.0, 3.0]
/// ```
pub fn print(&self) {
println!("{:?}", self.data);
}
/// Reshapes the `Vector` into a matrix with specified dimensions.
///
/// # Parameters
/// - `rows`: The number of rows in the resulting matrix.
/// - `cols`: The number of columns in the resulting matrix.
///
/// # Returns
/// - A `Matrix<K>` derived from the `Vector<K>`.
///
/// # Panics
/// - Panics if the size of the `Vector` does not match the requested dimensions (`rows * cols` must equal `self.size()`).
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let vec = Vector::new(vec![1.0, 2.0, 3.0, 4.0]);
/// let mat = vec.reshape(2, 2);
/// assert_eq!(mat.size(), (2, 2));
/// ```
pub fn reshape(&self, rows: usize, cols: usize) -> Matrix<K> {
assert_eq!(self.data.len(), rows * cols, "Vector size does not match the dimensions of the matrix.");
assert!(rows * cols != 0, "Reshape invalid dimensions.");
let data = self.data
.chunks(cols)
.map(|chunk| chunk.to_vec())
.collect();
Matrix { data }
}
/// Computes the linear combination of a set of vectors using Fused Multiply-Add (FMA).
///
/// # Parameters
/// - `u`: A slice of `Vector`s of type `K` to be combined.
/// - `coefs`: A slice of coefficients of type `K`, corresponding to the vectors in `u`.
///
/// # Returns
/// - A `Vector<K>` containing the result of the linear combination.
///
/// # Panics
/// - Panics if the length of `u` and `coefs` do not match, or if the vectors in `u` are not the same size.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let u = vec![Vector::from([1.0, 2.0]), Vector::from([3.0, 4.0])];
/// let coefs = vec![0.5, 0.5];
/// let result = Vector::linear_combination(&u, &coefs);
/// ```
pub fn linear_combination(u: &[Vector<K>], coefs: &[K]) -> Vector<K> {
assert_eq!(u.len(), coefs.len(), "Vectors and coefficients must have the same length.");
if u.is_empty() {
return Vector::new(vec![]);
}
let size = u[0].size();
for vector in u.iter() {
assert_eq!(vector.size(), size, "All vectors must have the same size.");
}
let mut result = Vector::new(vec![K::zero(); size]);
for (i, vector) in u.iter().enumerate() {
let coef = coefs[i];
for (j, elem) in vector.data.iter().enumerate() {
// result.data[j] += *elem * coef; //
result.data[j] = K::fma(*elem, coef, result.data[j]);
}
}
result
}
/// Computes the dot product with another `Vector<K>`.
///
/// # Parameters
/// - `v`: A reference to another `Vector<K>`.
///
/// # Returns
/// - The result of the dot product of type `K`.
///
/// # Panics
/// - Panics if the vectors are not of the same size.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let vec1 = Vector::new(vec![42.0, 4.2]);
/// let vec2 = Vector::new(vec![-42.0, 4.2]);
/// assert_eq!(vec1.dot(&vec2), -1746.36);
/// ```
pub fn dot(&self, v: &Vector::<K>) -> K {
assert_eq!(self.size(), v.size());
let mut result = K::zero();
for (a, b) in self.data.iter().zip(v.data.iter()) {
result = K::fma(*a, *b, result);
}
result
}
/// Computes the 1-norm (Manhattan norm) of the vector.
///
/// <div>
/// <h3> Formula </h3>
/// <img src="https://github.com/user-attachments/assets/aa97364a-0260-41ea-a723-2250d156565a" alt="Manhattan norm"/>
/// </div>
/// <hr>
///
/// # Returns
/// - The computed 1-norm as type `K`.
///
/// # Panics
/// - This function does not panic.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let vec = Vector::new(vec![3, -4, 5]);
/// assert_eq!(vec.norm_1(), 12.0);
/// ```
pub fn norm_1(&self) -> f32 {
self.data.iter().map(|&x| x.to_f32().abs()).sum()
}
/// Computes the 2-norm (Euclidean norm) of the vector.
///
/// <div>
/// <h3> Formula </h3>
/// <img src="https://github.com/user-attachments/assets/4e796701-2c65-4ecb-b189-d041ce48551e" alt="Euclidean norm"/>
/// </div>
/// <hr>
///
/// # Returns
/// - The computed 2-norm as an `f32`.
///
/// # Panics
/// - This function does not panic.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let vec = Vector::new(vec![3.0, -4.0, 5.0]);
/// assert_eq!(vec.norm(), (3.0_f32.powi(2) + 4.0_f32.powi(2) + 5.0_f32.powi(2)).sqrt());
/// ```
pub fn norm(&self) -> f32 {
let mut sum_of_squares = 0.0;
for &x in &self.data {
sum_of_squares = K::fma(x, x, K::from_f32(sum_of_squares)).to_f32();
}
sum_of_squares.sqrt()
}
/// Computes the ∞-norm (supremum or maximum norm) of the vector.
///
/// <div>
/// <h3> Formula </h3>
/// <img src="https://github.com/user-attachments/assets/622e614c-e17e-4733-9352-31f4d65977de" alt="Supremum/maximum norm"/>
/// </div>
/// <hr>
///
/// # Returns
/// - The computed ∞-norm as an `f32`.
///
/// # Panics
/// - This function does not panic.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let vec = Vector::new(vec![3.0, -4.0, 5.0]);
/// assert_eq!(vec.norm_inf(), 5.0);
/// ```
pub fn norm_inf(&self) -> f32 {
self.data.iter().map(|&x| x.to_f32().abs()).fold(0.0, f32::max)
}
/// Adds another `Vector<K>` to the calling `Vector<K>`.
///
/// # Parameters
/// - `v`: A reference to the other `Vector<K>` to add.
///
/// # Returns
/// - No return value; the calling vector is modified in place.
///
/// # Panics
/// - Panics if the vectors are not of the same size.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let mut vec1 = Vector::new(vec![42.0, 4.2]);
/// let vec2 = Vector::new(vec![-42.0, 4.2]);
/// vec1.add(&vec2);
/// assert_eq!(vec1.data, vec![0.0, 8.4]);
/// ```
pub fn add(&mut self, v: &Vector<K>) {
assert_eq!(self.size(), v.size(), "Vectors must be the same size for addition.");
for (i, val) in v.data.iter().enumerate() {
self.data[i] += *val;
}
}
/// Subtracts another `Vector<K>` from the calling `Vector<K>`.
///
/// # Parameters
/// - `v`: A reference to the other `Vector<K>` to subtract.
///
/// # Returns
/// - No return value; the calling vector is modified in place.
///
/// # Panics
/// - Panics if the vectors are not of the same size.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let mut vec1 = Vector::new(vec![42.0, 4.2]);
/// let vec2 = Vector::new(vec![-42.0, 4.2]);
/// vec1.sub(&vec2);
/// assert_eq!(vec1.data, vec![84.0, 0.0]);
/// ```
pub fn sub(&mut self, v: &Vector<K>) {
assert_eq!(self.size(), v.size(), "Vectors must be the same size for subtraction.");
for (i, val) in v.data.iter().enumerate() {
self.data[i] -= *val;
}
}
/// Scales the calling `Vector<K>` by a factor `a`.
///
/// # Parameters
/// - `a`: The scaling factor to multiply each element of the vector.
///
/// # Returns
/// - No return value; the calling vector is modified in place.
///
/// # Example
/// ```rust
/// use matrix::Vector;
///
/// let mut vec1 = Vector::new(vec![42.0, 4.2]);
/// vec1.scl(2.0);
/// assert_eq!(vec1.data, vec![84.0, 8.4]);
/// ```
pub fn scl(&mut self, a: K) {
for elem in &mut self.data {
*elem *= a;
}
}
/// Calculates the cosine of the angle between two `Vector`s, `u` and `v`.
///
/// This function computes the cosine of the angle θ using the formula:
///
/// ```text
/// cos(θ) = (u ⋅ v) / (‖u‖ * ‖v‖)
/// ```
///
/// where `u ⋅ v` is the dot product, and `‖u‖` and `‖v‖` are the magnitudes of the vectors.
///
/// The returned cosine value is between -1.0 and 1.0:
/// - 1.0 indicates the vectors are parallel and pointing in the same direction.
/// - -1.0 indicates they are parallel but pointing in opposite directions.
/// - 0.0 indicates the vectors are perpendicular.
///
/// # Parameters
///
/// * `u` - The first `Vector`.
/// * `v` - The second `Vector`.
///
/// # Returns
///
/// A `f32` value between -1.0 and 1.0 representing the cosine of the angle between `u` and `v`.
///
/// # Panics
///
/// This function will panic if the vectors are not the same size or if either has zero magnitude.
///
/// # Example
///
/// ```
/// use matrix::Vector;
///
/// let vec1 = Vector::new(vec![0, 1]);
/// let vec2 = Vector::new(vec![0, -1]);
/// assert_eq!(Vector::angle_cos(&vec1, &vec2), -1.0);
/// ```
pub fn angle_cos(u: &Vector<K>, v: &Vector<K>) -> f32 {
assert_eq!(u.size(), v.size(), "Vectors must be the same size.");
let u_norm = u.norm();
let v_norm = v.norm();
if u_norm == 0.0 || v_norm == 0.0 {
panic!("Cannot compute angle between zero vectors.");
}
let cos_theta = Scalar::to_f32(Vector::dot(u, v)) / (u_norm * v_norm);
cos_theta.clamp(-1.0, 1.0)
}
/// Computes the cross product of two 3-dimensional `Vector`s, `u` and `v`.
///
/// # Description
///
/// This function calculates the cross product of two 3D vectors using the formula:
///
/// ```text
/// u × v =
/// [ u_y * v_z - u_z * v_y,
/// u_z * v_x - u_x * v_z,
/// u_x * v_y - u_y * v_x ]
/// ```
///
/// where:
/// - `u_x`, `u_y`, and `u_z` are the components of vector `u`,
/// - `v_x`, `v_y`, and `v_z` are the components of vector `v`.
///
/// The cross product of two vectors results in a third vector that is perpendicular to both `u` and `v`,
/// following the right-hand rule. The resulting vector lies in the plane perpendicular to both input vectors.
///
/// # Parameters
///
/// * `u` - The first 3-dimensional `Vector`.
/// * `v` - The second 3-dimensional `Vector`.
///
/// # Returns
///
/// Returns a `Vector<K>` that represents the cross product of `u` and `v`.
/// The result is perpendicular to both `u` and `v`.
///
/// # Panics
///
/// This function will panic if either `u` or `v` is not of size 3, as the cross product is only defined in 3D space.
///
/// # Example
///
/// ```
/// use matrix::Vector;
///
/// let vec1 = Vector::new(vec![1.0, 0.0, 0.0]);
/// let vec2 = Vector::new(vec![0.0, 1.0, 0.0]);
/// assert_eq!(Vector::cross_product(&vec1, &vec2), Vector::new(vec![0.0, 0.0, 1.0]));
/// ```
pub fn cross_product(u: &Vector<K>, v: &Vector<K>) -> Vector<K> {
assert_eq!(u.size(), 3, "Vectors must be of size 3.");
assert_eq!(v.size(), 3, "Vectors must be of size 3.");
let res_a: K = K::fms(u.data[1], v.data[2], v.data[1] * u.data[2]);
let res_b: K = K::fms(u.data[2], v.data[0], v.data[2] * u.data[0]);
let res_c: K = K::fms(u.data[0], v.data[1], v.data[0] * u.data[1]);
Vector::new(vec![res_a, res_b, res_c])
}
}
use std::ops::{AddAssign, SubAssign, MulAssign};
impl<K: Scalar> AddAssign for Vector<K> {
fn add_assign(&mut self, other: Self) {
self.add(&other)
}
}
impl<K: Scalar> SubAssign for Vector<K> {
fn sub_assign(&mut self, other: Self) {
self.sub(&other)
}
}
impl<K: Scalar> MulAssign<K> for Vector<K> {
fn mul_assign(&mut self, scalar: K) {
self.scl(scalar)
}
}
impl<K: Scalar> PartialEq for Vector<K>
{
fn eq(&self, other: &Self) -> bool {
if self.size() != other.size() {
return false;
}
self.data.iter().zip(&other.data).all(|(a, b)| *a == *b)
}
}
// Unit Tests
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_vector_size() {
let vec = Vector::new(vec![1.0, 2.0, 3.0]);
assert_eq!(vec.size(), 3);
}
#[test]
fn test_vector_size_zero() {
let vec: Vector<f32> = Vector::new(vec![]);
assert_eq!(vec.size(), 0);
}
#[test]
fn test_vector_reshape_square() {
let vec = Vector::new(vec![1.0, 2.0, 3.0, 4.0]);
let mat = vec.reshape(2, 2);
assert_eq!(mat.size(), (2, 2));
}
#[test]
fn test_vector_reshape() {
let vec = Vector::new(vec![1.0, 2.0, 3.0]);
let mat = vec.reshape(1, 3);
assert_eq!(mat.size(), (1, 3));
}
#[test]
#[should_panic(expected = "Vector size does not match the dimensions of the matrix.")]
fn test_vector_reshape_few_elements() {
let vec = Vector::new(vec![1.0, 2.0, 3.0]);
let mat = vec.reshape(2, 3);
assert_eq!(mat.size(), (2, 3));
}
#[test]
#[should_panic(expected = "Vector size does not match the dimensions of the matrix.")]
fn test_vector_reshape_lots_of_elements() {
let vec = Vector::new(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]);
let mat = vec.reshape(2, 3);
assert_eq!(mat.size(), (2, 3));
}
#[test]
#[should_panic(expected = "Reshape invalid dimensions.")]
fn test_vector_reshape_invalid_dimensions() {
let vec: Vector<f32> = Vector::new(vec![]);
let mat = vec.reshape(0, 0);
assert_eq!(mat.size(), (0, 0));
}
#[test]
fn test_vector_add_with_zero_vector() {
let mut vec1 = Vector::new(vec![10.0, 20.0, 30.0]);
let vec2 = Vector::new(vec![0.0, 0.0, 0.0]);
vec1.add(&vec2);
assert_eq!(vec1.data, vec![10.0, 20.0, 30.0]);
}
#[test]
fn test_vector_add_negative_numbers() {
let mut vec1 = Vector::new(vec![10.0, -5.0, 30.0]);
let vec2 = Vector::new(vec![-10.0, -5.0, -30.0]);
vec1.add(&vec2);
assert_eq!(vec1.data, vec![0.0, -10.0, 0.0]);
}
#[test]
fn test_vector_add_large_numbers() {
let mut vec1 = Vector::new(vec![1e6, 2e6, 3e6]);
let vec2 = Vector::new(vec![1e6, 2e6, 3e6]);
vec1.add(&vec2);
assert_eq!(vec1.data, vec![2e6, 4e6, 6e6]);
}
#[test]
#[should_panic(expected = "Vectors must be the same size for addition.")]
fn test_vector_add_panic_on_different_sizes() {
let mut vec1 = Vector::new(vec![10.0, 20.0]);
let vec2 = Vector::new(vec![1.0, 2.0, 3.0]);
vec1.add(&vec2);
}
#[test]
fn test_vector_add_empty_vectors() {
let mut vec1 : Vector<f32> = Vector::new(vec![]);
let vec2: Vector<f32> = Vector::new(vec![]);
vec1.add(&vec2);
assert_eq!(vec1.data, vec![]);
}
#[test]
fn test_vector_sub_with_zero_vector() {
let mut vec1 = Vector::new(vec![10.0, 20.0, 30.0]);
let vec2 = Vector::new(vec![0.0, 0.0, 0.0]);
vec1.sub(&vec2);
assert_eq!(vec1.data, vec![10.0, 20.0, 30.0]);
}
#[test]
fn test_vector_sub_negative_numbers() {
let mut vec1 = Vector::new(vec![10.0, -5.0, 30.0]);
let vec2 = Vector::new(vec![-10.0, -5.0, -30.0]);
vec1.sub(&vec2);
assert_eq!(vec1.data, vec![20.0, 0.0, 60.0]);
}
#[test]
fn test_vector_sub_large_numbers() {
let mut vec1 = Vector::new(vec![1e6, -2e6, 3e6]);
let vec2 = Vector::new(vec![1e6, 2e6, -3e6]);
vec1.sub(&vec2);
assert_eq!(vec1.data, vec![0.0, -4e6, 6e6]);
}
#[test]
#[should_panic(expected = "Vectors must be the same size for subtraction.")]
fn test_vector_sub_panic_on_different_sizes() {
let mut vec1 = Vector::new(vec![10.0, 20.0]);
let vec2 = Vector::new(vec![3.0]);
vec1.sub(&vec2);
}
#[test]
fn test_vector_sub_empty_vectors() {
let mut vec1 : Vector<f32> = Vector::new(vec![]);
let vec2: Vector<f32> = Vector::new(vec![]);
vec1.add(&vec2);
assert_eq!(vec1.data, vec![]);
}
#[test]
fn test_vector_scaling_basic() {
let mut vec1 = Vector::new(vec![42.0, 4.2]);
vec1.scl(2.0);
assert_eq!(vec1.data, vec![84.0, 8.4]);
}
#[test]
fn test_vector_scaling_basic_2() {
let mut vec1: Vector<f64> = Vector::new(vec![42.0, 4.2]);
let scalar: f64 = 2.0;
vec1 *= scalar;
assert_eq!(vec1.data, vec![84.0, 8.4]);
}
#[test]
fn test_vector_scaling_by_zero() {
let mut vec1 = Vector::new(vec![10.0, 20.0, 30.0]);
vec1.scl(0.0);
assert_eq!(vec1.data, vec![0.0, 0.0, 0.0]);
}
#[test]
fn test_vector_scaling_by_negative() {
let mut vec1 = Vector::new(vec![10.0, -5.0, 30.0]);
vec1.scl(-1.0);
assert_eq!(vec1.data, vec![-10.0, 5.0, -30.0]);
}
#[test]
fn test_vector_scaling_with_large_factor() {
let mut vec1 = Vector::new(vec![1.0, 2.0, 3.0]);
vec1.scl(1e6);
assert_eq!(vec1.data, vec![1e6, 2e6, 3e6]);
}
#[test]
fn test_vector_scaling_empty_vector() {
let mut vec1: Vector<f32> = Vector::new(vec![]);
vec1.scl(5.0);
assert_eq!(vec1.data, vec![]);
}
/// Test linear combination using f32 with FMA
#[test]
fn test_linear_combination_fma_f32() {
let vec1 = Vector::new(vec![1.0, 2.0, 3.0, 4.0]);
let vec2 = Vector::new(vec![0.5, 1.5, 2.5, 3.5]);
let coefs = vec![2.0, 0.5];
let result = Vector::linear_combination(&[vec1, vec2], &coefs);
assert_eq!(result.data, vec![2.0 * 1.0 + 0.5 * 0.5, 2.0 * 2.0 + 0.5 * 1.5, 2.0 * 3.0 + 0.5 * 2.5, 2.0 * 4.0 + 0.5 * 3.5]);
}
/// Test linear combination using i32 (without FMA, should fallback to a * b + c)
#[test]
fn test_linear_combination_i32() {
let vec1 = Vector::new(vec![1, 2, 3, 4]);
let vec2 = Vector::new(vec![1, 2, 3, 4]);
let coefs = vec![2, 1];
let result = Vector::linear_combination(&[vec1, vec2], &coefs);
assert_eq!(result.data, vec![3, 6, 9, 12]);
}
#[test]
fn test_linear_combination_empty() {
let vec1: Vector<f32> = Vector::new(vec![]);
let vec2: Vector<f32> = Vector::new(vec![]);
let coefs = vec![2.0, 0.5];
let result = Vector::linear_combination(&[vec1, vec2], &coefs);
assert_eq!(result.data, vec![]);
}
#[test]
#[should_panic(expected = "Vectors and coefficients must have the same length.")]
fn test_linear_combination_mismatched_sizes() {
let vec1 = Vector::new(vec![1.0, 2.0, 3.0]);
let vec2 = Vector::new(vec![1.0, 2.0, 3.0]);
let coefs = vec![2.0]; // Coefficient list is too short (1 coef for 2 vectors)
// This should panic because the number of vectors and coefficients don't match
let _ = Vector::linear_combination(&[vec1, vec2], &coefs);
}
#[test]
fn test_linear_combination_negative_coefficients() {
let vec1 = Vector::new(vec![1, 2, 3, 4]);
let vec2 = Vector::new(vec![-5, -15, -25, -35]);
let coefs = vec![2, -5];
let result = Vector::linear_combination(&[vec1, vec2], &coefs);
assert_eq!(result.data, vec![2 * 1 - 5 * -5, 2 * 2 - 5 * -15, 2 * 3 - 5 * -25, 2 * 4 - 5 * -35]);
}
#[test]
fn test_dot_product_vec_i32() {
let vec1: Vector<i32> = Vector::new(vec![1, 1]);
let vec2: Vector<i32> = Vector::new(vec![1, 1]);
assert_eq!(vec1.dot(&vec2), 2);
}
#[test]
fn test_dot_product_vec_f32() {
let vec1 = Vector::new(vec![3.0, 5.5]);
let vec2 = Vector::new(vec![-1.0, 2.0]);
assert_eq!(vec1.dot(&vec2), 8.0);
}
#[test]
fn test_norm_1_f32() {
let vec = Vector::new(vec![3.0, -4.0, 5.0]);
let result = vec.norm_1();
assert_eq!(result, 12.0);
}
#[test]
fn test_norm_1_f64() {
let vec: Vector<f64> = Vector::new(vec![3.0, -4.5, 5.0]);
let result = vec.norm_1();
assert_eq!(result, 12.5);
}
#[test]
fn test_norm_1_u32() {
let vec = Vector::new(vec![3, 4, 5]);
let result = vec.norm_1();
assert_eq!(result, 12.0);
}
#[test]
fn test_norm_f32() {
let vec: Vector<f32> = Vector::new(vec![3.0, 4.0]);
let result = vec.norm();
assert_eq!(result, 5.0);
}
#[test]
fn test_norm_f64() {
let vec: Vector<f64> = Vector::new(vec![3.0, 4.0]);
let result = vec.norm();
assert_eq!(result, 5.0);
}
#[test]
fn test_norm_i32() {
let vec: Vector<i32> = Vector::new(vec![6, 8]);
let result = vec.norm();
assert_eq!(result, 10.0);
}
#[test]
fn test_norm_u32() {
let vec: Vector<u32> = Vector::new(vec![6, 8]);
let result = vec.norm();
assert_eq!(result, 10.0);
}
#[test]
fn test_norm_inf_f32() {
let vec: Vector<f32> = Vector::new(vec![3.0, -7.0, 5.0]);
let result = vec.norm_inf();
assert_eq!(result, 7.0);
}
#[test]
fn test_norm_inf_f64() {
let vec: Vector<f64> = Vector::new(vec![3.0, -7.0, 5.0]);
let result = vec.norm_inf();
assert_eq!(result, 7.0);
}
#[test]
fn test_norm_inf_u32() {
let vec: Vector<u32> = Vector::new(vec![2, 9, 5]);
let result = vec.norm_inf();
assert_eq!(result, 9.0);
}
#[test]
fn test_angle_cos_parallel_vectors() {
let vec1 = Vector::new(vec![1.0, 0.0]);
let vec2 = Vector::new(vec![2.0, 0.0]);
assert_eq!(Vector::angle_cos(&vec1, &vec2), 1.0);
}
#[test]
fn test_angle_cos_opposite_vectors() {
let vec1 = Vector::new(vec![1.0, 0.0]);
let vec2 = Vector::new(vec![-1.0, 0.0]);
assert_eq!(Vector::angle_cos(&vec1, &vec2), -1.0);
}
#[test]
fn test_angle_cos_perpendicular_vectors() {
let vec1 = Vector::new(vec![1.0, 0.0]);
let vec2 = Vector::new(vec![0.0, 1.0]);
assert_eq!(Vector::angle_cos(&vec1, &vec2), 0.0);
}
#[test]
fn test_angle_cos_with_f32() {
let vec1 = Vector::new(vec![1.0f32, 2.0, 3.0]);
let vec2 = Vector::new(vec![1.0f32, 2.0, 3.0]);
let result = Vector::angle_cos(&vec1, &vec2);
println!("{result}");
assert!(result > 0.999);
}
#[test]
fn test_angle_cos_with_f64() {
let vec1 = Vector::new(vec![1.0f64, 2.0, 3.0]);
let vec2 = Vector::new(vec![4.0f64, -5.0, 6.0]);
let result = Vector::angle_cos(&vec1, &vec2);
println!("{result}");
assert!(result > 0.365 && result < 0.366);
}
#[test]
fn test_angle_cos_different_sizes() {
let vec1 = Vector::new(vec![1.0, 2.0, 3.0]);
let vec2 = Vector::new(vec![4.0, 5.0]);
let result = std::panic::catch_unwind(|| Vector::angle_cos(&vec1, &vec2));
assert!(result.is_err());
}
#[test]
fn test_angle_cos_with_zero_vector() {
let vec1 = Vector::new(vec![1.0, 2.0, 3.0]);
let vec2 = Vector::new(vec![0.0, 0.0, 0.0]);
let result = std::panic::catch_unwind(|| Vector::angle_cos(&vec1, &vec2));
assert!(result.is_err());
}
#[test]
fn test_angle_cos_with_integer_vectors() {
let vec1 = Vector::new(vec![1, 2, 3]);
let vec2 = Vector::new(vec![4, -5, 6]);
let result = Vector::angle_cos(&vec1, &vec2);
assert!(result > 0.365 && result < 0.366);
}
#[test]
fn test_angle_cos_with_large_vectors() {
let vec1 = Vector::new(vec![1000.0, 2000.0, 3000.0]);
let vec2 = Vector::new(vec![4000.0, -5000.0, 6000.0]);
let result = Vector::angle_cos(&vec1, &vec2);
assert!(result > 0.365 && result < 0.366);
}
#[test]
fn test_angle_cos_identical_vectors() {
let vec1 = Vector::new(vec![3.0, 4.0, 5.0]);
let vec2 = Vector::new(vec![3.0, 4.0, 5.0]);
assert_eq!(Vector::angle_cos(&vec1, &vec2), 1.0);
}
#[test]
fn test_angle_cos_zero_length_vectors() {
let vec1 = Vector::new(vec![0.0, 0.0, 0.0]);
let vec2 = Vector::new(vec![0.0, 0.0, 0.0]);
let result = std::panic::catch_unwind(|| Vector::angle_cos(&vec1, &vec2));
assert!(result.is_err());
}
#[test]
fn test_cross_product_orthogonal_vectors() {
let vec1 = Vector::new(vec![1.0, 0.0, 0.0]);
let vec2 = Vector::new(vec![0.0, 1.0, 0.0]);
let result = Vector::cross_product(&vec1, &vec2);
assert_eq!(result, Vector::new(vec![0.0, 0.0, 1.0]));
}
#[test]
fn test_cross_product_parallel_vectors() {
let vec1 = Vector::new(vec![1.0, 1.0, 1.0]);
let vec2 = Vector::new(vec![2.0, 2.0, 2.0]);
let result = Vector::cross_product(&vec1, &vec2);
assert_eq!(result, Vector::new(vec![0.0, 0.0, 0.0]));
}
#[test]
fn test_cross_product_with_negative_values() {
let vec1 = Vector::new(vec![3.0, -3.0, 1.0]);
let vec2 = Vector::new(vec![4.0, 9.0, 2.0]);
let result = Vector::cross_product(&vec1, &vec2);
assert_eq!(result, Vector::new(vec![-15.0, -2.0, 39.0]));
}
#[test]
#[should_panic(expected = "Vectors must be of size 3.")]
fn test_cross_product_non_3d_vector_u() {
let vec1 = Vector::new(vec![1.0, 2.0]);
let vec2 = Vector::new(vec![1.0, 2.0, 3.0]);
Vector::cross_product(&vec1, &vec2);
}
#[test]
#[should_panic(expected = "Vectors must be of size 3.")]
fn test_cross_product_non_3d_vector_v() {
let vec1 = Vector::new(vec![1.0, 2.0, 3.0]);
let vec2 = Vector::new(vec![1.0, 2.0]);
Vector::cross_product(&vec1, &vec2);
}
#[test]
fn test_cross_product_i32_and_f64() {
let vec1: Vector<i32> = Vector::new(vec![1, 0, 0]);
let vec2: Vector<i32> = Vector::new(vec![0, 1, 0]);
let result = Vector::cross_product(&vec1, &vec2);
assert_eq!(result, Vector::new(vec![0, 0, 1]));
let vec3: Vector<f64> = Vector::new(vec![1.0, 0.0, 0.0]);
let vec4: Vector<f64> = Vector::new(vec![0.0, 1.0, 0.0]);
let result_f64 = Vector::cross_product(&vec3, &vec4);
assert_eq!(result_f64, Vector::new(vec![0.0, 0.0, 1.0]));
}
}